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Quantum entanglement is one of the most striking fea-
tures of quantum systems. It is an indispensable ele-
ment of quantum computation and quantum informa-
tion processing[1−4]. Over the past few years, there has
been considerable interest in the dynamics of entangle-
ment based on the different quantum systems[5]. Yu et

al. demonstrated how two entangled qubits which in-
dividually interact with vacuum noise can become com-
pletely disentangled in a finite time. This interesting
phenomenon is termed as entanglement sudden death
(ESD)[6] and studied further by the authors in other
cases[7−9]. Moreover, ESD has been theoretically studied
in a variety of systems[10−14] and demonstrated in quan-
tum optics experiments[15,16].

Nonlocality of quantum state is the other basic charac-
teristic of quantum mechanics. In recent work, Jaeger et

al. pointed out that the Bell-nonlocality has new features
which are similar to ESD[17]. They showed that multipar-
tite Bell-inequality violations could disappear suddenly
in a finite time, a phenomenon currently referred to as
the Bell-nonlocality sudden death. Yang et al. investi-
gated tripartite nonlocality evolution in two-atom Tavis–
Cummings model with consideration to cavity decay[18].
Previous studies on the evolution of entanglement and
nonlocality have been limited to microscopic systems be-
cause of the uncertainty of proper quantification of en-
tanglement in relation to macroscopic systems. More re-
cently, Luo et al. extended the analysis of the evolution
of nonlocality to the case of two macroscopic fields that
interact with a resonant atom[19]. They referred to the
study of Chen et al. on the formalism of Bell CHSH’s
inequality[20], which is based on pseudospin operators, to
study the evolution of nonlocality of continuous-variable
states. They showed that the collapse and revival of the
Bell-nonlocality are similar to the collapse and revival of
the atomic population inversion of the Jaynes-Cummings
model (JCM). Liao et al. investigated quantum nonlo-
cality dynamics of the interaction between a three-level
atom and a class of two-mode non-classical states (includ-
ing the entangled coherent state, the pair coherent state,
and the two-mode squeezed state) in the non-degenerate
two-photon JCM[21].

We consider the most general case in the double JCM,
which is different from the situation in Ref. [19]. We

study how the mean photon number of the macroscopic
field, as well as the detuning between the atomic transi-
tion frequency and the field frequency, affects the evolu-
tion of two initial entangled macroscopic fields. Further-
more, we discuss the effects of asymmetric couplings on
the evolution of Bell-nonlocality between the two fields.

We consider two spatially separated JCM cavity fields
that individually interact with a two-level atom (Fig. 1).
It should be emphasized that there is no interaction and
communication between the two cavities or between the
two atoms. Moreover, we suppose that the two cavi-
ties are treated as lossless. In a frame rotating with the
photon frequency and assuming ~ = 1, the Hamiltonian
equation for the whole system is given by

Htot =
1

2
(∆σA

z + ∆σB
z ) + g1(a

+
1 σ

A
− + a−1 σ

A
+)

+ g2(a
+
2 σ

B
− + a−2 σ

B
+ ), (1)

where ∆ is the detuning between the atomic transi-
tion frequency ω and the field frequency; σj

+, σj
−, σj

z
(j = A,B) denote the rising, lowering, and population
inversion operators for the jth atom; a+

i and a−i (i = 1, 2)
are the creation and annihilation operators for the ith
cavity mode, respectively; and g1 and g2 are the atom-
cavity coupling strengths.

For the macroscopic fields, we adhere to the Chen et

al. version of Bell CHSH’s inequality[20], which is based
on pseudospin operators. It is defined as

sz =

∞
∑

n=0

[|2n+ 1〉 〈2n+ 1| − |2n〉 〈2n|], (2)

s− =

∞
∑

n=0

|2n〉 〈2n+ 1| = (s+)+, (3)

Fig. 1. Scheme of the double JCM where no interaction be-
tween the two cavities exists.
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sx ± isy = 2s±, (4)

â · ŝ = sz cos θa + sin θa(eiϕas− + e−iϕas+), (5)

where θa and ϕa are the polar and azimuthal angles of
the unit vector â, respectively. The Bell-CHSH operator
based on the pseudospin operators is defined as[20]

BCHSH = (â · ŝ1) ⊗ (b̂ · ŝ2) + (â · ŝ1) ⊗ (b̂′ · ŝ2)
+ (â′ · ŝ1) ⊗ (b̂ · ŝ2) − (â′ · ŝ1) ⊗ (b̂′ · ŝ2), (6)

where â and b̂ are the unit vectors and the subscripts 1
and 2 are the labels of the two continuous-variable sys-
tems. In the continuous-variable system, 〈BCHSH〉 is the
expectation value of BCHSH for a given quantum state,
which is bounded by 2

√
2. If |〈BCHSH〉| = 2

√
2 for a par-

ticular state, the Bell-CHSH inequality is indicated to be
maximally violated by the given quantum state.

Supposing that the atoms are prepared in the ground
state |g〉 and the two cavities are initially in the entangled
coherent state, then

|ψfield〉 =
1√
Na

(cos θ|α〉1|−α〉2 − sin θ|α〉1|−α〉2),

Nα = 1 − sin 2θe−4|α|2. (7)

After an interaction time t, the evolution of the system
is given by
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where Cn = αn

√
n!

e−|α|2/2, C′
m = (−α)m

√
m!

e−|α|2/2, Ωn =
√

∆2 + 4g2
1(n+ 1), Ω′

m =
√

∆2 + 4g2
2(m+ 1).

In the present paper, the expectation value of BCHSH

for the state described by Eq. (8) is given by

〈BCHSH〉 = 〈Ψ(t)|BCHSH|Ψ(t)〉
= 〈(â · ŝ1) ⊗ (b̂ · ŝ2)〉 + 〈(â · ŝ1) ⊗ (b̂′ · ŝ2)〉
+ 〈(â′ · ŝ1) ⊗ (b̂ · ŝ2)〉 − 〈(â′ · ŝ1) ⊗ (b̂′ · ŝ2)〉.

(9)

The evolution of 〈BCHSH〉 of the two fields that individ-
ually interact with a resonant atom has been discussed
in Ref. [19]. In this section, we study how the atom-field
detuning affects the evolution of the Bell-nonlocality of
two initially entangled coherent fields. Thus, assum-
ing that the two cavities are in the maximally entan-
gled state, we set g1 = g2 = g, θ = π

4 and ∆ = ag
in Eq. (9). Subsequently, we choose the azimuthal an-
gles ϕa = ϕb = ϕa′ = ϕb′ = 0 and the polar angles
θa = 0, θa′ = π

2 , θb = −θb′ . From Eqs. (2)–(5), (8), and
(9), the result can be obtained as
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=
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(10)
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=
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−2|α|2

Nα
[(N5 +N7)

2 +N2
6 ],

(11)

where Nα = 1−e−4|α|2, (12)
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Fig. 2. Evolution of the |〈BCHSH〉|max
in a short period of

time.
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Consequently, 〈BCHSH〉 can be given by

〈BCHSH〉 =
8e−2|α|2

Nα

(N1 − N4)(N3 − N2)(cos θb + U sin θb),

(20)

where U =
N2

6−(N5+N7)
2

(N1−N4)(N3−N2)
. From Eq. (20), the maxi-

mum value of 〈BCHSH〉 can be easily derived as

|〈BCHSH〉|max
=

8e−2|α|2

Nα

|(N1 − N4)(N3 − N2)|
p

1 + U2.

(21)

The maximum value of |〈BCHSH〉| for the state with
different atom-field detuning in a short period of time is
plotted in Fig. 2. The function of |〈BCHSH〉|max facilitates
rapid oscillations in a short period of time. The Bell-
nonlocality violations of the two fields will disappear in a
finite time and will be recovered soon because the atoms
interact with the cavity fields. Afterwards, the atomic
dipole stores the phase information of the field, eventu-
ally destroying the coherence of the fields. If the atoms
and the cavities are maximally entangled, then the two
fields are in mixed states after tracing over the atoms.
This will cause the disappearance of the nonlocality be-
tween these two different field phase elements. In Fig.
2, the oscillation frequency of |〈BCHSH〉|max decreases

when the atom-field detuning increases. Moreover, the
oscillation frequency of |〈BCHSH〉|max increases when the
number of the mean photon increases.

The oscillation period of the entanglement between
the two fields is T = π/g

√

a2 + 4|α|2, which is equal
to the oscillation period of entanglement between the
atomic system and field system[22]. Furthermore, the
oscillation period is half of the corresponding period of
the atomic population inversion because we used squares
of summations rather than summations for the origi-
nal inversion calculations in Eq. (21)[23]. Thus, we set
α = 20,∆ = 10g, α = 20,∆ = 20g, and α = 10,∆ = 10g,
and substitute them into T = π/g

√

a2 + 4|α|2 resulting
in oscillation periods of 0.0762/g, 0.0702/g, and 0.1404/g,

respectively. These numerical results are in good agree-
ment with those shown in Fig. 2.

The peak value of |〈BCHSH〉|max decreases gradually
in relation to time because the atom and field cannot
be completely disentangled at time τ . With the increase
in τ , the remaining entanglement between the atoms
and cavities increases, while the entanglement between
the two fields decreases. Moreover, as the mean pho-
ton number of the fields and the atom-field detuning
increase, the remaining entanglement between the atoms
and fields decreases. Thus, the decrease of the oscillation
peaks becomes slower.

Furthermore, an interesting phenomenon in the
non-resonant case exists (Fig. 2). The function of
|〈BCHSH〉|max has two group peaks and the odd peaks
are higher than the even ones because the coefficients of

the summations in Eq. (21) involve cos2 t
√

∆2 + 8g2n/2,

cos2 t
√

∆2 + 4g2(2n+ 1)/2, sin2 t
√

∆2 + 8g2n/2, and

sin2 t
√

∆2 + 4g2(2n+ 1)/2. The values of the odd and
even peaks are determined by the coefficients of the
cosine and sine summations, respectively. When the
detuning is not excessively large, a slight difference be-
tween the cosine and sine summations coefficients is
produced. The difference increases when the atom-field
detuning increases. The even peaks will become lower as
the atom-field detuning increases until it disappears.

Compared with the theoretical analysis in Ref. [23],
the summations in Eq. (21) are similar to those for the
atomic population inversion in the original discussion of
quantum revivals. Thus, we expect |〈BCHSH〉|max to have
a similar revival behavior. The evolution of |〈BCHSH〉|max

Fig. 3. The maximum value of |〈BCHSH〉| versus time for max-
imally entangled coherent states.
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Fig. 4. Maxima of |〈BCHSH〉| versus time for entangled coher-
ent states, where g2 = λg1.

under different conditions for a long period of time is
shown in Fig. 3 where the Bell-nonlocality violations re-
vival after an interval is clarified. The interval time is
equal to that of the atomic population inversion, which

is given by tR = π
(

∆2 + 4g2|α|2
)1/2

/g2[23]. Substitut-

ing α = 20,∆ = 0, 10g, 50g; α = 10, and ∆ = 50g into
the above equation, the results are in good agreement
with those shown in Fig. 3. The revival interval will in-
crease with the mean photon number of the fields and the
increase of the detuning between the atoms and fields.
Figure 3 shows that the function of |〈BCHSH〉|max creates

rapid oscillations with period T = π/g
√

a2 + 4|α|2 in the
same regions that are close to the revival time.

In Figs. 3(b), (c), and (d), the value of |〈BCHSH〉|max
which is close to the revival regions increases when the
atom-field detuning increases. An increasing atom-field
detuning means that the energy exchange between the
atomic system and the cavity decreases. This indi-
cates the decreasing influence of the atoms on the fields.
Therefore, the entangled information of the cavity fields
leaking into the atoms is reduced when the atom-field
detuning increases after one or several full periods of the
energy exchange[24].

Guo et al.[25] investigated the effects of asymmetric
couplings between atoms and a cavity field on entan-
glement dynamics. In some initial states, the inhomo-
geneous couplings not only induced but also enhanced
the entanglement. In the current study, we discuss the
effects of asymmetric couplings on the evolution of Bell-
nonlocality of the fields that individually interact with
a resonant atom. By setting g1 = g, g2 = λg1, and
∆ = 0 the evolution of Bell-nonlocality of the fields in
this case can be derived from Eqs. (8) and (9). In Fig. 4,
|〈BCHSH〉|max is plotted as a function of gt. Comparing

θ = π/4 with the equal couplings case[19], the function of
|〈BCHSH〉|max creates rapid oscillations in a short period
of time for g2 = 0.5g1. In Fig. 4(b), two low oscillation
peaks between the two adjacent high peaks are shown.

In conclusion, we investigate the Bell-nonlocality of two
initially entangled macroscopic fields in the double JCM.
It should be emphasized that there is no interaction be-
tween the two cavities and that the cavities in our double
JCM are lossless. In our model, the two spatially sepa-
rated cavities individually interact with a non-resonant
atom. Similar to the resonant case[19], collapse and re-
vival of Bell-nonlocality of the two macroscopic fields are
observed. The revival time (t = π(∆2 + 4g2|α|2)1/2/g2)

and the oscillation period (T = π/g
√

a2 + 4|α|2) increase
when the detuning between the atomic transition fre-
quency and the field frequency increase. The collapse of
the Bell-nonlocality is caused by the atom and field that
cannot be completely disentangled. The disappearance
of the field phase information stored in the two atoms
leads to the recovery of Bell-nonlocality. In addition,
we discuss how the disparity between the two coupling
strengths affects the evolution of Bell-nonlocality of the
fields.
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